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Abstract Analytical solutions are presented for four consecutive two-step kinetic
schemes, which involve a first reaction with zeroth, first, second ormixed second order
dependence and a second step, which is second order with respect to the intermediate
formed in the first step. Two of the analytical solutions found use elementary functions
not very commonly encountered in chemistry, as the rate equations are shown to be
related to the Legendre or modified Bessel differential equations. The solutions are
analyzed not only as a function of time, but by plotting two concentrations as a function
of each other as well. The dependence of the kinetic traces on the parameter values is
also investigated. In all cases, two scaling parameters are identified. Three of the four
cases are characterized by a single shape parameter, which is basically the ratio of the
rate constant scaled with a suitable concentration unit if necessary. The mixed second
order–second order scheme has an additional shape parameter, which is the ratio of
the initial concentrations of the two reactants.

Keywords Reaction kinetics · Mathematical modelling · Intermediate · Two-stage
process · Second order process

1 Introduction

Chemical kinetics aims to describe the time evolution of chemical reactions. This is
usually achieved by establishing a rate equation, which gives the rate of concentration
changes in a system as a function of the concentrations [1,2]. The concentrations can
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be considered continuous variables, so the rate equations are autonomous, ordinary
differential equations that need to be solved to obtain the time dependence of the
concentrations. In cases when very small amounts of substance are involved, an alter-
native approach, usually called stochastic chemical kinetics should be used to take the
particulate nature of matter into account. In this approach, the time dependence of the
process is characterized by probabilities through a master equation [2,3]. Yet in the
large majority of practical cases, the traditional (deterministic) approach to chemical
kinetics is quite sufficient.

A key element in deterministic kinetics is solving the rate equation. The rate equa-
tion is typically an ordinary differential equation. Quite general solutions are known
when the equation is linear or only involves the concentration of a single species [1,2].
For other cases, general numerical solutionmethods are known [4], but analytical solu-
tions are typically difficult to find. Yet, it is clear that analytical solutions offer major
advantages: the parameter dependence is transparent. Also, when measured data are
fitted to the scheme, numerical differentiation, which is typically a not very stable
and computationally very demanding process, can be avoided. This is probably the
reason why a fair number of recent publications devote considerable efforts to finding
analytical solutions to various kinetic schemes with practical importance [5–21].

In a previous article of the present author, analytical solutions were reported for
a family of two-step kinetic schemes where the second process was first order with
respect to the intermediate [19]. As an extension of that previous work, the present
paper reports solutions for four two-step schemes in which the second step is second
order with respect to the intermediate.

2 General remarks on the solution methods

In the previous paper about two-step schemes with first order second steps, a general
solution method could be found [19]. For the schemes investigated in this work, no
such strategy could be implemented. However, for solving the differential equations
of three of the four schemes considered here, a common initial set of transformations
was useful, which will be discussed here at some length.

The schemes always involve the initial transformation of a reactant A to an inter-
mediate B, then a decay of B. The general rate equation describing these systems can
be given as follows:

d[A]

dt
= − f ([A])

d[B]

dt
= f ([A]) − 2k2[B]

2
(1)

[A] and [B] denote the concentrations of species A and B, whereas [A]0 and [B]0
will refer to the initial concentrations (i.e. those at t = 0). The general strategy used
in this paper relies on first determining the time dependence of the concentration of
the reactant (A) in the initial step. This is possible independently of the rest of the
concentrations because the reactions are irreversible, so in effect, the rate equation
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of a single-stage scheme needs to be solved. The concentration of A always changes
in a monotonous fashion (decreases). Because of this, it is often fruitful to seek the
dependence of the concentration of B on the concentration of A first. The differential
equation is as follows:

d[B]

d[A]
= −1 + 2k2[B]2

f ([A])
(2)

After solving this equation, the time dependence of the concentration of B can be
obtained simply by substituting the known time dependence of the concentration of
A. This strategy cannot be used when the first step is zeroth order with respect to
[A], because the rate of concentration change for species B is independent of the
concentration of [A] in this case. Themain text of this paperwill only state the solutions
of the differential equations. The validity of these solutions can be checked by simple
differentiation. However, the Supplementary Information also gives guidelines on how
the equations can be solved.

2.1 Zeroth order first step

If the first reaction is zeroth order with respect to its reagent, the consecutive reactions
are given by the following scheme:

A
zeroth order, k1−−−−−−−−→ B

2B
k2−→ C

(3)

The simultaneous differential equations describing the system shown in Eq. 3 are as
follows:

d[A]

dt
= −sgn([A])k1

d[B]

dt
= sgn([A])k1 − 2k2[B]

2
(4)

The concentration of C can be given simply from mass balance, so this will not be
indicated in the rate equations. The notation sgn refers to the signum function [22],
similarly to the previous article of this author [19]. The multiplicator 2 appears before
k2 in the second equation to satisfy well established kinetic conventions about second
order reactions [1,21,23,24]. The time dependence of the concentration of A is easily
given in a zeroth order process [1,21]:

[A] =
{
[A]0 − k1t if t ≤ [A]0/k1
0 if t > [A]0/k1

(5)

This is the only case in this paper where the general approach described in Eq. 2
cannot be used. This is because at t > [A]0/k1, [A] is invariably zero but [B] changes,
so [B] cannot be thought of as a function [A]. Yet, as the rate of concentration change
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of B is independent of the concentration of A, this is the simplest case of all here.
The second differential equation in Eq. 4 is separable without any transformations
and the solution for the concentration of B is readily obtained as (see Supplementary
Information):

[B] =

⎧⎪⎨
⎪⎩

√
k1
2k2

th
(√

2k1k2t + arth
(√

2k2/k1[B]0
))

if t ≤ [A]0/k1

[B]([A]0/k1)
1+2k2(t−[A]0/k1)[B]([A]0/k1) if t > [A]0/k1

(6)

The concentration of B at the critical time t = [A]0/k1 is separate parameter combi-
nation in Eq. 6 and can be given based on the first part of Eq. 6:

[B]([A]0/k1) =
√

k1
2k2

th
(√

2k2/k1[A]0 + arth
(√

2k2/k1[B]0
))

(7)

Finally, the concentration of the final product formed in the second order transfor-
mation of (denoted as C) is given easily from mass balance equations (i.e. noting that
the sum 2[A] + 2[B] + [C] is independent of time):

[C] = [A]0 + [B]0 − [A] − [B]

2
+ [C]0 (8)

For the most often encountered problems in chemical kinetics, the reaction usually
starts purely from species A, and [B]0 = [C]0 = 0. In this case, the formation and
decay of B serves as a classical example of the behavior of an intermediate. Figure 1
displays a few sample kinetic curves calculated using Eq. 7. The scaling used in this
figure is adopted especially for this system with an emphasis on curve shapes: the
concentrations on the y axis is given in [A]0 units, whereas time on the x axis is given
in 1/(k2[A]0) units. The whole system has three parameters ([A]0, k1 and k2), but two
of these are scaling parameters ([A]0 and k2[A]0) and the only parameter determining

Fig. 1 Representative scaled
kinetic traces for the
intermediate in the zeroth
order–second order consecutive
reaction (Eq. 5). The values of
the shape parameter
k2[A]

2
0/k1 : 0.1 (a), 0.5 (b), 1

(c), 2 (d), 5 (e)
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the shapes of the curves is k2[A]20/k1. Figure 1 shows five different curves for five
different values of the shape parameter. Similar scaling will later as well.

The curves in Fig. 1 have a break point at time [A]0/k1. This is similar to the case
of the zeroth order–first order reaction [19], and the primary reason is that the zeroth
order curves describing the time dependence of the concentration of A also has a break
point here (i.e. it reaches its 0 final value).

2.2 First order first step

When the first step in the two consecutive reactions is first order with respect to A, the
scheme is described as follows:

A
k1−→ B

2B
k2−→ C

(9)

The simultaneous differential equations based on this scheme can be give as:

d[A]

dt
= −k1[A]

d[B]

dt
= k1[A] − 2k2[B]

2
(10)

The first equation in this series is a well-known first order rate equation, the solution
of which is available in almost any textbook on chemical kinetics [1,21]:

[A] = [A]0e
−k1t (11)

Following the general approach described earlier, Eq. 2 takes the following particular
form:

d[B]

d[A]
= −1 + 2k2[B]2

k1[A]
(12)

This is not a separable differential equation. Yet, after somewell selected substitutions,
it can be transformed into themodifiedBessel differential equation (see Supplementary
Information). The solution is given as:

[B] =
√

[A]

2k2/k1

2K1
(√

8[A]k2/k1
) − ωI1

(√
8[A]k2/k1

)
2K0

(√
8[A]k2/k1

) + ωI0
(√

8[A]k2/k1
)

ω =
√
8[A]0/(k2/k1)K1

(√
8(k2/k1)[A]0

)
− 4[B]0K0

(√
8(k2/k1)[A]0

)
√
2[A]0/(k2/k1)I1

(√
8(k2/k1)[A]0

)
+ 2[B]0 I0

(√
8(k2/k1)[A]0

)
(13)

In Eq. 13, I1 and I0 are modified Bessel functions of the first kind [25], whereas
K1 and K0 are modified Bessel function of the second kind [26]. These elementary
mathematical functions can be calculated as follows:
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Fig. 2 Scaled concentration of
the intermediate as a function of
the scaled concentration of the
reagent in the first order–second
order consecutive reaction
(scheme in Eq. 9). The values of
the shape parameter
k2[A]0/k1 : 0.05 (a), 0.2 (b), 1
(c), 2.5 (d), 10 (e)

In(x) =
( x
2

)n ∞∑
j=0

1

j!(n + j)!

(
x2

4

) j

Kn(x) = xn
n∏
j=1

(2 j − 1)

∞∫
0

cosw

(w2 + x2)n+1/2 dw

(14)

Figure 2 displays the concentration of [B] as a function of [A]. The initial concen-
tration [A]0 is used as a concentration unit. The only shape parameter of this system
is k2[A]0/k1, the curves are drawn for in Fig. 2 five different cases.

After substituting the concentration of A given in Eq. 11, the solution for [B] can
also be stated directly as a function of time:

[B] =
√
k1[A]0e−k1t

2k2

2K1

(√
8k2[A]0e−k1t/k1

)
− ωI1

(√
8k2[A]0e−k1t/k1

)

2K0

(√
8k2[A]0e−k1t/k1

)
+ ωI0

(√
8k2[A]0e−k1t/k1

) (15)

Figure 3 shows five different examples based on this equation. On this scaled graph, the
time unit is 1/(k2[A]0) and the concentration unit is [A]0. The shape parameter is again
k2[A]0/k1. All the curves in Fig. 3 show the expected maximum. The concentration
value at thismaximum is higher and it occurs earlier as the value of the shape parameter
decreases. The concentration of C can be calculated by mass balance with an equation
identical to Eq. 8.
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Fig. 3 Representative scaled
kinetic traces for the
intermediate in the first
order–second order consecutive
reaction (Eq. 13). The values of
the shape parameter
k2[A]0/k1 : 0.05 (a), 0.2 (b), 1
(c), 2.5 (d), 10 (e)

2.3 Second order first step

When the first step is a second order process, the kinetic scheme is represented as
follows:

2A
k1→B

2B
k2→C

(16)

The simultaneous differential equations that can be written based on this scheme for
the concentrations of A and B take the following form:

d[A]

dt
= −2k1[A]

2

d[B]

dt
= k1[A]

2 − 2k2[B]
2

(17)

Again, thefirst of these differential equations, describingonly the concentration change
of A, is the well-known case of second order kinetics, and the solution is given in
standard textbooks of chemical kinetics [1,21]:

[A] = [A]0
1 + 2k1[A]0t

(18)

Therefore, Eq. 2 takes the following particular form for this scheme:

d[B]

d[A]
= −1

2
+ k2[B]2

k1[A]2
(19)

After some well selected substitutions (see Supplementary Information), Eq. 19 can
be transformed into a separable equation and solved:

[B] = [A]

(α − 1)(α + 1)
− α[A]

(α − 1)(α + 1)
th

(
α

2
ln

[A]

[A]0
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Fig. 4 Scaled concentration of
the intermediate as a function of
the scaled concentration of the
reagent in the second
order–second order consecutive
reaction (scheme in Eq. 16). The
values of the shape parameter
k2/k1 : 0.05 (a), 0.2 (b), 1 (c), 2
(d), 10 (e)

+ arth
[A]0 − [B]0(α − 1)(α + 1)

α[A]0

)
(20)

α = √
2k2/k1 + 1

Figure 4 shows five example traces in the form of concentration–concentration plot
similar to Fig. 2. The only shape parameter of this plot is the rate constant ratio k2/k1.

After substituting Eq. 18 into Eq. 20 and expanding the hyperbolic tangent function
as the rational function of exponentials, the concentration of B can also be stated
directly as a function of time:

[B] = k1[A]0
2k2

(1 + α)(
√
1 + 2k1[A]0t)−1+α + ω(1 − α)(

√
1 + 2k1[A]0t)−1−α

(
√
1 + 2k1[A]0t)1+α + ω(

√
1 + 2k1[A]0t)1−α

ω = 1 + α − (α − 1)(α + 1)[B]0/[A]0
(α − 1)(α + 1)[B]0/[A]0 + α − 1

(21)

Finally, the concentration of C can be calculated by a mass conservation equation
similar to

[C] = [A]0 − [A]

4
+ [B]0 − [B]

2
+ [C]0 (22)

Figure 5 gives five example kinetic curves calculated using Eq. 21. In this graph, [A]0
is the concentration unit, 1/(k2[A]0) is the time unit (scaling parameters), whereas the
single shape parameter is k2/k1.

2.4 Mixed second order first step

In a mixed second order step, two different substances (rather than two identical ones
as in the previous case) react to give a product. The scheme of a mixed second order
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Fig. 5 Representative scaled
kinetic traces for the
intermediate in the second
order–second order consecutive
reaction (Eq. 21). The values of
the shape parameter
k2/k1 : 0.05 (a), 0.2 (b), 1 (c), 2
(d), 10 (e)

step followed by a true second order reaction looks like this:

A1 + A2
k1→B

2B
k2→C

(23)

The rate equation is given as follows:

d[A1]

dt
= −k1[A1][A2]

d[A2]

dt
= −k1[A1][A2] (24)

d[B]

dt
= k1[A1][A2] − 2k2[B]

2

Let A1 be the limiting reagent and A2 the excess reagent. This is simply a matter
of choice as the notations A1 and A2 can be exchanged. Equation [A2] − [A1] =
[A2]0 − [A1]0 = � holds at all time so that the first equation of Eq. 24 can be
transformed into:

d[A1]

dt
= −k1[A1]([A1] + �) (25)

If [A2]0 = [A1]0 (so � = 0), the solution is identical to the solution already derived
in the previous section and given in Eq. 21. Again, the solution of Eq. 25 is found in
textbooks [1,21]:

[A1] = �[A1]0
[A2]0e�k1t − [A1]0

[A2] = �[A2]0
[A2]0 − [A1]0e−�k1t

(26)
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In this system, Eq. 2 assumes the following form:

d[B]

d[A1]
= −1 + 2k2[B]2

k1([A1] + �)[A1]
(27)

After substitutions and some further transformations, this equation can be reduced
to the Legendre differential equation (see Supplementary Information). The solution
connecting the concentrations of A1 and B can be stated as follows:

[B] = � + 2[A1]

2α
−

�ωPα+1

(
1 + 2[A1]

�

)
+ �Q0

α+1

(
1 + 2[A1]

�

)

2αωPα

(
1 + 2[A1]

�

)
+ 2αQ0

α

(
1 + 2[A1]

�

)

ω = �Q0
α+1(x0) − �x0Q0

α(x0) + 2[B]0αQ0
α(x0)

�x0Pα(x0) − �Pα+1(x0) − 2[B]0αPα(x0)
(28)

α =
√
8(k2/k1) + 1 − 1

2
x0 = 1 + 2[A1]0

�

In Eq. 28, Pα(x) represents the Legendre function of the first kind [27], whereasQ0
α(x)

is the associated Legendre function of the second kind type 3 [28]. Possible definitions
of these functions include the following identities:

Pα(x)

= 2F1

(
−α, α + 1, 1,

1 − x

2

)

= 1 +
∞∑
n=1

(−α)( − α + 1) · · · (−α + n − 1)(α + 1)(α + 2) · · · (α + n)

n!n!

(
1−x

2

)n

Q0
α(x)

= −cos(απ)�(−α − 1/2)�(α + 1)

(x − 1)α+12α+1
√

π
2F1

(
α + 1, α + 1, 2α + 2,

2

1 − x

)
(29)

The function 2F1 in Eq. 29 is the hypergeometric function [29]. The use of this function
was also necessary in the solution of the mixed second order–first order consecutive
scheme [19]. The notation Γ (x) refers to the gamma function, which is an exten-
sion of the factorial function to real numbers [30]. Figure 6 shows five examples of
concentration–concentration traces based onEq. 28.Unlike in the three previous cases,
there are two shape parameters in this system: [A2]/[A1] and k2/k1.

The concentration of B can also be given as the function of time. For this purpose,
the following substitution needs to be made in Eq. 28:

1 + 2[A1]

�
= [A2]0e�k1t + [A1]0

[A2]0e�k1t − [A1]0
(30)
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Some sample kinetic curves are shown in Fig. 7. The scaling parameters are concen-
tration unit [A1]0 and time unit 1/(k1[A1]0), whereas the shape parameters are the
same as in Fig. 6: [A2]/[A1] and k2/k1. The usual mass balance equation can be used
to obtain the concentration of C:

[C] = [A1]0 + [B]0 − [A1] − [B]

2
+ [C]0 (31)

Finally, it should be remarked that the third order–second order scheme, in analogy
with the paper reporting the solutions of consecutive reactions with first order second
steps [19], was also given some considerations. Unfortunately, attempts to find an
analytical solution for this case have remained unsuccessful to date.

Fig. 6 Scaled concentration of
the intermediate as a function of
the scaled concentration of the
limiting reagent in the mixed
second order–second order
consecutive reaction (scheme in
Eq. 23). The values of the shape
parameters [A2]0/[A1]0 = 2
(a), 5 (b), 2 (c), 5 (d), 2 (e);
k2/k1 = 0.2 (a), 1 (b), 1 (c), 5
(d), 4 (e)

Fig. 7 Representative scaled
kinetic traces for the
intermediate in the mixed second
order–second order consecutive
reaction (Eq. 28). The values of
the shape parameters
[A2]0/[A1]0 = 2 (a), 5 (b), 2
(c), 5 (d), 2 (e); k2/k1 = 0.2 (a),
1 (b), 1 (c), 5 (d), 4 (e)
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2.5 Practical applications of the derived analytical solutions

The analytical solutions derived in this paper offer advantages compared to the numer-
ical solutions of the same ordinary differential equations [4], which can be routinely
carried by a considerable variety of scientific software packages. First, the parameter
dependence of the solutions is much clearer in the analytical solutions. Scaling and
shape parameters [21] are readily identified in these formulas, which is not obvious
in numerical solutions. Furthermore, calculating the actual solutions for a problem
is much less computationally intensive in this way. The major advantage in calcula-
tions probably lies in derivation: whenever curve fitting is attempted, the analytical
solutions provide a way of obtaining analytical derivatives, which is very favorable
compared to the option of highly unstable and computationally demanding numerical
differentiation [21].

The kinetic schemes discussed here are not uncommon in chemistry. For example,
in laser flash photolysis studies the first order formation of a reactive radical and it
subsequent second-order decay is not uncommon, a recent example is the case of the
chlorine, bromine and iodinemolecule radicals (Cl−2 , Br−2 , and I

−
2 ) [31].When radicals

are generated and undergo recombination in experiments, one of the schemes studied
here is likely to be useful. Two very recent experimental examples are investigations
of the recombination of benzophenone ketyl free radicals [32] and dichlorocarbene
radicals [33].

In addition to the direct uses, some less direct applications can be envisioned too. In
chain mechanism, especially those involving radicals, second-order termination reac-
tions are very common. The mathematical logic of the description of chain reactions
[21] often makes it possible to set up two-step rate equations for the concentrations of
the chain carriers, and the second step in these equations is second-order because of the
second order termination. Such reaction networks are regularly encountered: rubber
vulcanization kinetics [34,35] and the autoxidation of aqueous sulfur(IV) [36,37] are
only two examples.

3 Conclusion

It is concluded that the analytical solutions of two-step consecutive reaction scheme
with second order later steps can be found in a few selected cases. The solutions of
the zeroth order–second order and second order–second order schemes are reasonably
simple, and a common scientific calculator would be enough to carry out all necessary
computations when their values are needed. The first order–second order and the
mixed second order–second order schemes are a bit more complicated as the solutions
use Legendre functions and modified Bessel functions. Commonly used mathematical
softwares can readily handle these cases as well, and fitting experimental data to these
analytical formulas should also be straightforward.

Acknowledgments The research was supported by the EU and co-financed by the European Social
Fund under the Project ENVIKUT (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The author also thanks the
Hungarian Science Foundation for financial support under grant No. NK 105156.

123



J Math Chem (2015) 53:1759–1771 1771

References

1. J.H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd edn. (McGraw-Hill, New York,
1995)

2. P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions (Manchester University Press,
Manchester, 1989)

3. P. Érdi, G. Lente, Stochastic Chemical Kinetics. Theory and (Mostly) Systems Biological Applications
(Springer, Heidelberg, 2014)

4. C.W. Gear, Commun. ACM 14, 176–179 (1971)
5. T.P.J. Knowles, C.A. Waudby, G.L. Devlin, S.I.A. Cohen, A. Aguzzi, M. Vendruscolo, E.M. Terentjev,

M.E. Welland, C.M. Dobson, Science 326, 1533–1537 (2009)
6. F. Garcia-Sevilla, M. Garcia-Moreno, M. Molina-Alarcon, M.J. Garcia-Meseguer, J.M. Villalba, E.

Arribas, R. Varon, J. Math. Chem. 50, 1598–1624 (2012)
7. D. Vogt, J. Math. Chem. 51, 826–842 (2013)
8. P. Miškinis, J. Math. Chem. 51, 1822–1834 (2013)
9. G. Milani, J. Math. Chem. 51, 2033–2061 (2013)

10. V. Vlasov, React. Kinet. Mech. Catal. 110, 5–13 (2013)
11. R.M. Torrez Irigoyena, S.A. Giner, J. Food Eng. 128, 31–39 (2014)
12. D.K. Garg, C.A. Serra, Y. Hoarau, D. Parida, M. Bouquey, R. Muller, Macromolecules 47, 4567–4586

(2014)
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